10 research outputs found

    Heterotic analysis using AFLP markers reveals moderate correlations between specific combining ability and genetic distance in maize inbred lines

    Get PDF
    Heterotic breeding strategies in maize (Zea mays L.) can be improved if high specific combining abilities in hybrid performance and a DNA marker-based genetic distance in the inbred lines is correlated, and hence heterosis can reliably be predicted. In this study, the genetic diversity across 9 elite maize inbred lines was evaluated using the amplified fragment length polymorphism (AFLP) marker. The genetic distance (GD) between each of all possible inbred pairs and the specific combining ability (SCA) and heterosis in the F1 hybrids were evaluated in a diallel set of crosses (Griffing II). Nineteen AFLP primers produced 1019 reproducible bands of which 691 (67.81%) were polymorphic. This gave an average of 53.6 bands per primer combination. A matrix of Genetic similarity (GS) according to UPGMA clustered the inbred lines into 4 groups with a GD ranging from 0.2442 to 0.4093. The results indicated that GD was moderately correlated with grain yield (0.4096), mid-parent heterosis (MH) (0.3624), better-parent heterosis (BH) (0.3309) and SCA (0.4725). Although the AFLP markers have high polymorphisms and can be used to detect the genetic divergences, place maize inbred lines in different heterotic pools and identify the most positive SCAs and heterosis, they are still limited in fully predicting hybrid performance

    Triple Helix as a Strategic Tool to Fast-Track Climate Change Adaptation in Rural Kenya: Case Study of Marsabit County

    Get PDF
    AbstractThe lack of affordable, clean, and reliable energy in Africa's rural areas forces people to resort to poor quality energy source, which is detrimental to the people's health and prevents the economic development of communities. Moreover, access to safe water and food security are concerns closely linked to health issues and children malnourishment. Recent climate change due to global warming has worsened the already critical situation.Electricity is well known to be an enabler of development as it allows the use of modern devices thus enabling the development of not only income-generating activities but also water pumping and food processing and conservation that can promote socioeconomic growth. However, all of this is difficult to achieve due to the lack of investors, local skills, awareness by the community, and often also government regulations.All the above mentioned barriers to the uptake of electricity in rural Kenya could be solved by the coordinated effort of government, private sector, and academia, also referred to as Triple Helix, in which each entity may partially take the other's role. This chapter discretizes the above and shows how a specific county (Marsabit) has benefited from this triple intervention. Existing government policies and actions and programs led by nongovernmental organizations (NGOs) and international agencies are reviewed, highlighting the current interconnection and gaps in promoting integrated actions toward climate change adaptation and energy access
    corecore